
Combining Model-driven and Schema-based Program Synthesis

Ewen Denney, Jon Whittle

QSS, NASA Ames Research Center,

Moffett Field, CA 94035, USA

{edenney,jonathw}@email.arc.nasa.gov

Abstract

We describe ongoing work which aims to extend
the schema-based program synthesis paradigm with ex-
plicit models. In this context, schemas can be considered
as model-to-model transformations. The combina-
tion of schemas with explicit models offers a number of
advantages, namely, that building synthesis systems be-
comes much easier since the models can be used in ver-
ification and in adaptation of the synthesis systems.
We illustrate our approach using an example from sig-
nal processing.

Keywords: model-driven architecture, program syn-
thesis, UML, Kalman filters.

1. Introduction

Schema-based synthesis is a technique for automati-
cally generating code from high-level behavioral speci-
fications. The technique has been effectively applied for
generating complete implementations in particular do-
mains, for example, signal processing algorithms (Aut-

oFilter [5]), and data analysis applications (Auto-

Bayes [1]). A schema is usually defined as a generic
representation of a family of applications. Synthesis
then instantiates a number of schemas and combines
them in a particular way. Schemas are a good way
of representing domain-specific knowledge in a mod-
ular and high-level way. Schema-based synthesis has
advantages over other forms of code generation in
that schemas can be combined in many different ways
thus leading to the ability to generate multiple imple-
mentations from the same specification. These imple-
mentations can be compared against metrics or non-
functional requirements before a final choice of imple-
mentation is made.

The OMG’s Model-Driven Architecture (MDA) [3,
4] advocates the development of systems by transform-

ing platform independent models (PIMs) into platform-
specific models (PSMs). From an MDA point of view,
schemas can be considered as PIM-to-PSM transfor-
mations (from the domain-specific specification lan-
guage to programming-language independent imple-
mentations). Many program synthesis systems do not
maintain explicit models of the specification language
or of the implementation. However, we do advocate
such an approach, both for the advantages of modeling
that it brings to program synthesis and for the trans-
ference of the advantages of synthesis to MDA. One of
the key thrusts of MDA is the automation of model-
to-model transformations. Schema-based synthesis can
be seen as one way of automating the transformations.

Most approaches to MDA, however, define transfor-
mations in terms of rewrite rules which are applied to
models to yield new models. In our approach, we pro-
pose that the schema (transformation) be defined in
terms of an input and an output model. The input
model defines a subset of applications in the domain
that a schema can operate on. The output model de-
fines the result of applying the schema. In addition,
schemas must instantiate the output model to create
specific artifacts which solve the input problem. Instan-
tiation is not normally considered part of MDA, but is
a crucial ingredient in program synthesis. This paper
will show how to combine synthesis and modeling, or,
put another way, how to include instantiation as part
of a domain-specific MDA.

We feel that current approaches for defining trans-
formations in MDA—e.g., those based on XML and
XSLT—do not offer enough flexibility for instantia-
tion. Synthesis is highly dependent on the specifics of
the particular problem under consideration in a way
that MDA is not. For example, different instantiations
of models will be generated according to the problem
context. Hence, any language to define such transfor-
mations must have mechanisms for accessing instances.

The benefits to MDA of merging synthesis and mod-



eling come from the fact that synthesis systems are
good at automating transformations. For example, the
AutoFilter [5] and AutoBayes [1] systems apply
multiple schemas to solve a particular problem, and
the correct application order of the schemas can be
found through search-based methods. MDA could ben-
efit from these techniques.

2. Schema-based Synthesis

Program synthesis comprises a range of techniques
for the automatic generation of low-level executable
code from high-level, declarative specifications of pro-
gram behavior. Traditionally, program synthesis has
taken the deductive approach, where programs are for-
mally derived within a constructive theorem prover.
The generative approach, in contrast, automates the
combination of program templates. The schema-based
approach, which we adopt here, is a combination of
these two paradigms.

A schema is essentially a program template to-
gether with applicability conditions. During synthesis,
schemas are recursively applied to assemble code in an
intermediate language. Although the intermediate lan-
guage is independent of the target implementation lan-
guage (and so is like a PIM), it forms an (intermedi-
ate) platform in its own right so we regard it as a PSM.
When a program in the intermediate language has been
fully constructed, it is passed to a backend code gen-
erator which then translates the program into a given
target platform.

3. Schema-based Modeling

In this section, we propose a schema development
process which directly incorporates explicit models.
Our idea is that schemas should be defined with re-
spect to explicit input and output models. First we
give a general overview of the schema development pro-
cess and then we discuss how this impacts on the mod-
els and schemas.

Figure 1 shows the artifacts involved in model-based
schema development. The input model is a represen-
tation of the key concepts that can be included in
specifications and their inter-relationships. The output
model, on the other hand, defines a model of the gen-
erated code. The action of schemas is to gradually in-
stantiate the output model. Thus its instantiation can
be regarded as representing the synthesis state so, in
addition to code fragments, records any design deci-
sions that have been made in the course of synthesis,
plus any extra information that the schemas need.

The input/output models are independent of a par-
ticular specification language or intermediate program-
ming language. Rather, they are domain-specific rep-
resentations of the structure and relationships of the
generated artifacts1 — i.e., an abstract syntax for the
domain-specific artifact generated.

Access to the models is mediated via front- and
back-ends. The input model must come with an ex-
traction function that defines how input model ele-
ments can be derived from elements of a particular
specification language. Similarly, the output model re-
quires a translation function that describes how to ob-
tain code in the intermediate language given an instan-
tiated model.

In addition to providing models of the input and out-
put of the synthesizer, it is often useful to optionally
provide “snapshots” at various stages of the synthesis
process. These internal models can specify additional
entities, which do not appear in the final model. More-
over, models may have additional constraints specified
between them, shown by dotted arrows in Figure 1,
which can be used for verification purposes both dur-
ing and after synthesis.

The upper half of Figure 1 shows the process for de-
veloping a schema. A schema takes as input two mod-
els — an instantiated input model and a partially in-
stantiated output model2 and returns a partially in-
stantiated output model. Scoping mechanisms can be
used to limit the input model that a schema has access
to or to limit the output model that can be instanti-
ated. This can be used, for example, to indicate that a
schema only constructs a certain fragment of the pro-
gram. In principle, access to the input specification can
also be scoped, but non-compositionality often means
that this is not appropriate. Schemas typically need ac-
cess to most of the input model to construct code frag-
ments

Ideally, models should be developed before schema
writing begins. In practice, however, things are likely
to be less clear-cut, with model and schema develop-
ment proceeding in parallel. It is precisely because of
this incremental development of models that we need
schemas to be defined with respect to explicit mod-
els.

We now illustrate these ideas with an example from
the state estimation domain. We discuss how to define
models and give a schema following the methodology
set out so far.

1 which may, in general, be something other than code. Here, we

use “code” in a general sense.

2 more generally, a schema could take internal models.



Input Output
Model

Internal
Model

Internal
Model

Intermediate
Code

model

optional

constraints

Model

Schema

Submodel
Output
Submodel

Extract

optional

partially instantiated

Submodel

Input

fully instantiated

Access Access and Instantiate

Submodel

Specification

Translate

Figure 1: The Schema Development Process.

3.1. Kalman Filter Models

We will use UML class diagrams as our modeling
language. An alternative would be some form of gram-
mar notation although this is more appropriate for
syntactic domains. A graphical notation like class di-
agrams is less prescriptive, and more appropriate for
underspecified domains.

We use Kalman filters as a motivating example.
These are recursive signal processing algorithms used
to estimate system state from noisy sensor data. Aut-

oFilter is a schema-based program synthesis system
which can automatically derive a range of Kalman fil-
ters from high-level specifications. This is a suitable do-
main for program synthesis (not least because of its rel-
evance for NASA) since there is a wide range of algo-
rithms used to solve mathematically well-defined prob-
lems in this area; yet it is precisely the variability and
complexity of potential solutions which makes imple-
mentations laborious and error-prone.

The output model for Kalman filters is given in Fig-
ure 2. It describes the “solution space” in terms of
the high-level structure of the possible solutions. Input
models can be given similarly but, in contrast, describe
the mathematical structure of the “problem space” in
terms of the physics of the problem.

The model given here simply defines the static syn-
tactic structure of the generated code. We can also
enforce semantic constraints on the input and output
models (as well as between them) by annotating mod-

els with OCL constraints. Schemas (i.e. model transfor-
mations) would then be required to satisfy these con-
straints.

There are two ways of checking these constraints:
dynamically, at synthesis time [2], and statically, at
schema definition time. A dynamic check ensures that
the application of schemas to a given input specifica-
tion satisfies the constraints. A static check would en-
sure that this holds for any valid input.

Although the tradition within program synthesis
(especially the deductive approach) has been to com-
pletely axiomatize the problem domain and reason for-
mally about the derivation process, we aim, rather, to
allow users to choose their level of formalism, by allow-
ing optional annotations.

3.2. A Kalman Filter Schema

In keeping with the OO-style we are following, we
use a Java-like syntax to define a schema for a stan-
dard Kalman Filter (Figure 3). This schema generates
fully instantiated code but, in general, a schema need
only partially instantiate a model. Schemas have two
inputs: a fully instantiated input model, and a par-
tially instantiated output model. Schemas are scoped
to restrict access to the full output model — the nota-
tion schema name(in model, out model :: Class) means
call the schema with name schema name with input
model in model and output model defined as the di-
rected acyclic graph in out model with Class as root.



Measurement Processing

Post Loop

Measurement Predict Measurement Tran HoldMeasurement

State Estimate proj eq State Estimate updt eq Gain eq Error Covariance proj eq Error Covariance updt eq

Loop

Control Transition

Measurement Transition

State Transition

Gain Identity Measurement Measurement Covariance Measurement Predict Measurement Tran Hold

Filter Output

Control TransitionControl Input

Error Covariance updateError Covariance project

State TransitionState Estimate updateState Estimate projectProcess CovarianceNominalMeasurement Transition

Declaration

Initialization

Filter Output Nominal

0..*

0..*

0..*

0..1

0..1

0..1

1..1 1..1 1..1 1..1 1..1

1..*

1..1

1..*

1..1 1..1

1..11..1 0..1

0..*

0..*

0..1 0..1

1..1

1..1

1..*

1..*

0..1

1..*

1..1

0..1 0..1 0..10..1

1..*

0..1

0..1

1..*

Kalman Filter

update_interval: real

steps: int

number_iterations : int

<<set>>

<<list>>

Update Loop Dependents

row_size: int

values[0..*]: real

Matrix

col_size: int

name : string

Figure 2: Domain description of Kalman Filter output (from [2]).

Declarations are similarly scoped. In the third line, kf
is declared as a new kalman filter scoped to the out-
put model (kf out), and later kf loop is declared as
a new loop (again, in kf out). We then link the two
by assigning kf loop to be the loop of the filter (i.e.
kf.loop).

The schema calls a number of sub-schemas, each of
which constructs a fragment of the program text. For
example, kf declarations constructs the appropriate
variable declarations and makes this information avail-
able to the other schemas. Finally, the schema returns
the (partially) instantiated output model.

Hence the output model is gradually instantiated by
the schemas. Objects are created, their attributes are
filled in with code, and this code is used, in turn, by
other schemas to create more code. The details of the
synthesis process can be found in [1, 5].

Schemas also contain assumptions and preconditions
(omitted here). The informal distinction is that precon-
ditions can be checked for satisfiability from the spec-
ification whereas assumptions cannot (because noth-
ing has been said about them in the specification). It
may be desirable to identify properties as first class op-
erators in the models and to restrict assumptions and
preconditions to expressions defined over those opera-
tors only. Both assumptions and preconditions can re-

fer to the original specification, as well as to what has
been constructed already.

4. Comparison of MDA and Schemas

The MDA transformation language suggested by the
authors in [3] differs from our schema-based synthesis
approach in a number of respects.

One difference is that schemas can be applied non-
deterministically, returning a number of distinct so-
lutions. Our system uses backtracking to search for
solutions. In contrast, MDA transformations are de-
terministic. Also, schemas call explicit sub-schemas,
rather than using implicit mappings and, since they are
written in a general-purpose programming language,
schemas can be composed in complex combinations
(e.g. recursively or iteratively).

Also, the typical application domains differ.
Whereas synthesis is concerned with mathemati-
cally and algorithmically complex domains, the MDA,
to date, has primarily been applied to automat-
ing the generation of interface and database access
code for data-processing applications.

However, we believe that these differences are more
historical than fundamental. Synthesis can benefit from



public schema: linear_discrete_kalman_filter (ddkf_in kf_in, ddkf_out kf_out) {
/* Declare new filter and give its name from spec */

kf_out::Kalman Filter kf = new kf_out::Kalman Filter();

kf.name = kf_in::Model.name;

/* ASSUMPTIONS */

. . .

/* PRECONDITIONS */

. . .

/* Instantiate main KF loop */

kf_out::Loop kf_loop = new kf_out::Loop();

kf.loop = kf_loop;

kf_loop.lower_bound = 0;

kf_loop.upper_bound = kf_in::Model.steps;

/* Instantiate rest of output model by calling subschemas.

Each subschema is restricted to a submodel of output model. */

kf.declaration = kf_declarations(kf_in, kf_out::Declaration);

kf.initialization = kf_initialization(kf_in, kf_out::Initialization);

. . .

return kf_out; }

Figure 3: Top-level schema for standard Kalman Filter.

using explicit modeling, and MDA would benefit from
the richer features of schema-based synthesis.

5. Conclusions

Our current efforts lie in developing language sup-
port for a schema-based synthesis system, explicitly
linking schemas to models. We anticipate a core schema
language, together with various optional extensions,
such as a means of specifying an architecture, a way
to incorporate comments and correctness annotations
into the synthesis process, optional postconditions in
schemas, or a means of referring to the synthesis state.
We are also formalizing a semantics for the schema lan-
guage.

We believe that a model-based schema language for
program synthesis offers a number of advantages. First,
it makes it possible for domain experts to adapt and
extend existing schemas, and to create new ones. In
the current implementation of AutoFilter, assump-
tions about the domain model are implicitly distributed
throughout the code, so it is not always clear where
structural assumptions have been made. Second, we
can enable some form of correctness checking on the
well-formedness of schemas.

Finally, there are several interesting extensions to
the modeling languages that might be useful for pro-

gram synthesis, such as hierarchy, scoping, and ordered
aggregations.

References

[1] B. Fischer and J. Schumann. AutoBayes: A system for
generating data analysis programs from statistical mod-
els. J. Functional Programming, 13(3):483–508, May
2003.

[2] E. Grant and J. Whittle. Checking program synthesizer
input/output. In Workshop on Domain-Specific Model-
ing, OOPSLA’03, Los Angeles, CA, 2003.

[3] A.Kleppe, J.Warmer, andW.Bast. MDAexplained (The
Model Driven Architecture: Practice and Promise). Ad-
dison Wesley, 2003.

[4] J. Mukeri and J. Miller. MDA Guide Version 1.0. Object
Management Group Specification, 2003.

[5] J. Whittle and J. Schumann. Automating the implemen-
tation of Kalman filter algorithms, 2004. Accepted for
publication.


